Ligand binding alters dimerization and sequestering of urokinase receptors in raft-mimicking lipid mixtures.
نویسندگان
چکیده
Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.
منابع مشابه
Lipid Raft-Mediated Regulation of G-Protein Coupled Receptor Signaling by Ligands which Influence Receptor Dimerization: A Computational Study
G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors; they activate heterotrimeric G-proteins in response to ligand stimulation. Although many GPCRs have been shown to form homo- and/or heterodimers on the cell membrane, the purpose of this dimerization is not known. Recent research has shown that receptor dimerization may have a role in organization of receptors...
متن کاملUrokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.
The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism...
متن کاملSpecific Phospholipid Oxidation Products Inhibit Ligand Activation of Toll-Like Receptors
Objective—We have previously shown that phospholipid oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3phosphorylcholine (ox-PAPC) inhibit lipopolysaccharide (LPS)-induced E-selectin expression and neutrophil binding in human aortic endothelial cells (HAECs). The current studies identify specific phospholipids that inhibit chemokine induction by Toll-like receptor-4 (TLR4) and -2 (TL...
متن کاملCholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors.
The ligands of certain G-protein coupled receptors (GPCRs) are membrane soluble and reach their target from the lipid bilayer. Lipid composition and dynamics will therefore modulate the activity of these receptors, but specific roles of lipid components, including the ubiquitous cholesterol (Chol), are not clear. We have probed the organization and dynamics of such a lipid-bilayer-penetrating l...
متن کاملForced Homodimerization by Site-Directed Mutagenesis Alters Guanylyl Cyclase Activity
Natriuretic peptides mediate their physiologic effects through activation of membrane-bound, guanylyl cyclase–coupled receptors (NPRs). Receptor dimerization is an important feature of signal transduction. This study was aimed at characterizing structurally important residues of the extracellular ligand-binding domain of NPR-B for receptor dimerization and cGMP generation. Deletion mutagenesis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 107 9 شماره
صفحات -
تاریخ انتشار 2014